CS-200
Computer Architecture

Part 4b. Instruction Level Parallelism
Basic Pipelining

Paolo lenne

<paolo.ienne@epfl.ch>

Circuit Timing and Performance

* Most of the time so far we have mainly discussed circuits at a higher level
of timing abstraction: what happens every cycle

— Finite State Machines: state <= next state

— Functional units and memory elements perform one operation over a small
number of cycles: e.g., a combinational ALU performs an addition per cycle

* To make faster circuits, we need to zoom-in briefly and understand more
of signal propagation and timing limitations

Signal Propagation

* The edge of the clock signal indicates:

1. When new data can be applied to the combinational part of the circuit

2. When old input data have crossed the combinational part of the circuit, the
result is ready, and it can be stored at the output

* To operate circuits “as fast as we can”, we apply a cLock signal
whose period is equal to the critical path delay (that is, the
longest delay) of the circuit

Propagation Time

The longest combinational
path determines the
operating frequency:

critical path

These could be the same register—e.g., pc

Propagation Time

For this circuit to operate properly, it must be

I, CLK, comb = Tvcritical path

Combinational Circuit

Only a small number of transistors are active
(= changing state) at a given time

Adding Intermediate Registers

EDGE EDGE EDGE

For this circuit to operate properly, it must be

I, CLK, pipe 2 newcritical path — * critical path / 3

Combinatorial Circuit with
Interspersed Registers

\\ 1/~

Registers rigidly delimit areas of activity

What Has Changed?

* Functionally: absolutely no change!

— We just have a fine grain control of the propagation through the intermediate
registers

e Clock can run faster

— If we have introduced N stages of intermediate registers evenly, roughly our critical
path is N times smaller

— Clock can run N times faster!

* Great?!
— Not really: we now need N cycles to get the result...

Multiple Operations in a Pipeline

Inactive areas for one operation
can be used for other operations!

#
Pipeline

Any Advantage Now?

 Time to compute a single operation is roughly the same as in the original circuit

* New results are available:

— In the original circuit, every original period T
— In the circuit with the registers used for a single calculation, every N cycles of period T/N = every T

— In the circuit with the registers where we inject a new computation every cycle, we get

[a new result every T/N! }

 \We can generate arbitrarily more results (N large)?!...

Latency and Throughput

* Latency
— Time between a computation begins and result is available

e Original circuit: T
* Pipelined circuit: /N xN=T
* Throughput
— Number of results available in the unit time
* Original circuit: 1/T=f
 Pipelined circuit: 1/(T/N) =N/T =N x f

 Above values only in theory...

Practical Pipelining

But flip-flops introduce a
delay of their own...

’ But one might not be able
to split evenly the circuit...

|deally, /

T;' = TCLK,comb/N

and

T

112

T

CLK, pipe

e Latency A,,=N-max(T +T.

pipe i=0..N—1

:N.TCLK,pipe :N/fp >ﬂ’0rig

ipe

* Throughput ¢, =1/ max (T, +Tz) = f,..

i=0.N-1

Useful Representation of
the Pipeline Activity

Time
>
t t+1 t+2 t+3 t+4 t+5 t+6
. . . . stage stage stage
multiplication i 1 5 3
T . . stage stage stage
multiplication i+1 1) 3
T . . stage stage stage
multiplication i+2 1 2 3
T . . stage stage stage
multiplication i+3 1 2 3
. 1. . . stage stage stage
multiplication i+4 1) 3

Tasks V¥

Pipeline Schedule Describes What Is in the
Plpelme at Each Cycle

t t+1 t+2 t+3 t+4 t+5 t46
T . . stage stage stage
multiplication i 1) 3
. e . . stage stage s \
multiplication i+1 1 > 3

multiplication i+2

multiplication i+3

multiplication i+4 stage | staee | stee
) <
B BB
"] S - _r|'
mult. H mult.] mult. N
ﬂ +3 I 42 —é—\l—Li+1 ;
‘D DEQ FO DEQ o

stage 1 T stage 2 T stage 3

Summary

Pipelining consists in splitting a task in smaller “subtasks”, and in
performing in parallel each “subtask” on a different piece of data

Pipelining is an extremely general technique to increase the throughput
of a system (circuit, processor, computer,...)

Pipelining does not improve latency (actually worsens it!)
Therefore, pipelining is only effective when one has to repeat a job on

many pieces of data (signal processing, communication packets,... and
processor instructions!)

References

e Patterson & Hennessy, COD — RISC-V Edition
— Beginning of Section 4.6

	CS-200�Computer Architecture�—�Part 4b. Instruction Level Parallelism�Basic Pipelining
	Circuit Timing and Performance
	Signal Propagation
	Propagation Time
	Propagation Time
	Combinational Circuit
	Adding Intermediate Registers
	Combinatorial Circuit with�Interspersed Registers
	What Has Changed?
	Multiple Operations in a Pipeline
	Any Advantage Now?
	Latency and Throughput
	Practical Pipelining
	Useful Representation of�the Pipeline Activity
	Pipeline Schedule Describes What Is in the Pipeline at Each Cycle
	Summary
	References

