
1

CS-200
Computer Architecture

—
Part 4b. Instruction Level Parallelism

Basic Pipelining

Paolo Ienne
<paolo.ienne@epfl.ch>



2

Circuit Timing and Performance

• Most of the time so far we have mainly discussed circuits at a higher level 
of timing abstraction: what happens every cycle
– Finite State Machines: state <= next_state
– Functional units and memory elements perform one operation over a small 

number of cycles: e.g., a combinational ALU performs an addition per cycle

• To make faster circuits, we need to zoom-in briefly and understand more 
of signal propagation and timing limitations



3

Signal Propagation

• The edge of the clock signal indicates:
1. When new data can be applied to the combinational part of the circuit
2. When old input data have crossed the combinational part of the circuit, the 

result is ready, and it can be stored at the output

• To operate circuits “as fast as we can”, we apply a clock signal 
whose period is equal to the critical path delay (that is, the 
longest delay) of the circuit



4

Propagation Time

The longest combinational 
path determines the 
operating frequency:

critical path

These could be the same register—e.g., pc



5

Propagation Time

EDGE

EDGE

EDGE

pathcriticalcombCLK TT ≥,

For this circuit to operate properly, it must be



6

Combinational Circuit

Only a small number of transistors are active
(= changing state) at a given time



7

Adding Intermediate Registers

EDGE

EDGE EDGE EDGE

EDGE

3, pathcriticalpathcriticalnewpipeCLK TTT ≅≥

For this circuit to operate properly, it must be



8

Combinatorial Circuit with
Interspersed Registers

Registers rigidly delimit areas of activity



9

What Has Changed?

• Functionally: absolutely no change!
– We just have a fine grain control of the propagation through the intermediate 

registers

• Clock can run faster
– If we have introduced N stages of intermediate registers evenly, roughly our critical 

path is N times smaller
– Clock can run N times faster!

• Great?!
– Not really: we now need N cycles to get the result…



1
0

Multiple Operations in a Pipeline

Inactive areas for one operation
can be used for other operations!

Pipeline



1
1

Any Advantage Now?
• Time to compute a single operation is roughly the same as in the original circuit

• New results are available:

– In the original circuit, every original period T

– In the circuit with the registers used for a single calculation, every N cycles of period T/N every T

– In the circuit with the registers where we inject a new computation every cycle, we get 

a new result every T/N!

• We can generate arbitrarily more results (N large)?!…



1
2

Latency and Throughput

• Latency
– Time between a computation begins and result is available

• Original circuit: T
• Pipelined circuit: T/N × N = T

• Throughput
– Number of results available in the unit time

• Original circuit: 1/T = f
• Pipelined circuit: 1/(T/N) = N/T = N × f

• Above values only in theory…



1
3

Practical Pipelining

• Latency

• Throughput

origpipepipeCLKFFiNipipe fNTNTTN λλ >=⋅=+⋅=
−=

/)(max ,1..0

pipeFFiNipipe fTT =+=
−=

)(max/1
1..0

φ

pipeCLKi TT ,≅

NTT combCLKi ,≅

and

1T 2T 3T

Ideally,

3=N
But flip-flops introduce a 

delay of their own…
But one might not be able 
to split evenly the circuit…



1
4

Useful Representation of
the Pipeline Activity

t t+1 t+2 t+3 t+4 t+5 t+6

multiplication i

multiplication i+1

multiplication i+2

multiplication i+3

multiplication i+4

stage
1

stage
2

stage
3

stage
1

stage
2

stage
3

stage
1

stage
2

stage
3

stage
1

stage
2

stage
3

stage
1

stage
2

stage
3

Time

Tasks



1
5

Pipeline Schedule Describes What Is in the 
Pipeline at Each Cycle

mult.
i+1

mult.
i+2

mult.
i+3

stage 1 stage 2 stage 3



1
6

Summary

• Pipelining consists in splitting a task in smaller “subtasks”, and in 
performing in parallel each “subtask” on a different piece of data

• Pipelining is an extremely general technique to increase the throughput
of a system (circuit, processor, computer,…)

• Pipelining does not improve latency (actually worsens it!)

• Therefore, pipelining is only effective when one has to repeat a job on 
many pieces of data (signal processing, communication packets,… and 
processor instructions!)



1
7

References

• Patterson & Hennessy, COD – RISC-V Edition
– Beginning of Section 4.6


	CS-200�Computer Architecture�—�Part 4b. Instruction Level Parallelism�Basic Pipelining
	Circuit Timing and Performance
	Signal Propagation
	Propagation Time
	Propagation Time
	Combinational Circuit
	Adding Intermediate Registers
	Combinatorial Circuit with�Interspersed Registers
	What Has Changed?
	Multiple Operations in a Pipeline
	Any Advantage Now?
	Latency and Throughput
	Practical Pipelining
	Useful Representation of�the Pipeline Activity
	Pipeline Schedule Describes What Is in the Pipeline at Each Cycle
	Summary
	References

